Protective Effects of Intralipid and Caffeic Acid Phenyl Esther (CAPE) on Neurotoxicity Induced by Ethanol in Rats.

نویسندگان

  • Seyit Kagan Basarslan
  • Arif Osun
  • Serkan Senol
  • Murat Korkmaz
  • Umit Ozkan
  • Ibrahim Kaplan
چکیده

AIM Ethanol causes oxidative degradation of the mitochondrial genome in the brain. This effect could contribute to the development of brain injury in some alcoholic patients. We investigated the protective effect of caffeic acid phenyl esther (CAPE) and intralipid (IL) on oxidative stress and neurotoxicity induced by ethanol intake. MATERIAL AND METHODS The forty-eight rats were randomly divided into seven groups. Ethanol was administered for acute toxicity. IL and CAPE were administered immediately after ethanol intake. Total oxidant status (TOS), total antioxidant status (TAS), and oxidative status index (OSi) were evaluated and histologic examination of cerebellum and brain tissue with Hematoxylin-Eosin and immuno-histochemical dyes was performed. RESULTS In the ethanol group, TAS levels were significantly lower than the other groups and this finding indicates that the toxic effect of ethanol reduces antioxidant levels. In the ethanol group, TOS levels were significantly higher than the other groups. These results showed that ethanol induced oxidative stress. IL treatment increased TAS levels, and CAPE decreased TOS levels against ethanol toxicity. There was correlation between TAS and TOS levels. Also, histopathologic results confirmed these biochemical results. CONCLUSION CAPE and IL treatment could be effective course of therapy to enhance therapeutic efficacy and may provide a promising approach for the treatment of neurotoxicity and oxidative stress induced by ethanol in clinic.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Protective Effect of Caffeic Acid Phenethyl Ester (CAPE) on Amiodarone-Induced Pulmonary Fibrosis in Rat

Treatment with amiodarone, a commonly prescribed antidysrhythmic agent, is associated with pulmonary fibrosis (PF) which is a commonly progressive and untreatable dieases. Caffeic acid phenethyl ester (CAPE) is a phenolic antioxidant and an active anti-inflammatory, anticancer, antimicrobial and antioxidant component of propolis (bee glue; a resinous hive product collected by honey bees). In th...

متن کامل

Protective Effect of Caffeic Acid Phenethyl Ester (CAPE) on Amiodarone-Induced Pulmonary Fibrosis in Rat

Treatment with amiodarone, a commonly prescribed antidysrhythmic agent, is associated with pulmonary fibrosis (PF) which is a commonly progressive and untreatable dieases. Caffeic acid phenethyl ester (CAPE) is a phenolic antioxidant and an active anti-inflammatory, anticancer, antimicrobial and antioxidant component of propolis (bee glue; a resinous hive product collected by honey bees). In th...

متن کامل

Protective Effects of Intralipid and Caffeic Acid Phenethyl Ester on Nephrotoxicity Caused by Dichlorvos in Rats

The protective effects of Caffeic Acid Phenethyl Ester (CAPE) and intralipid (IL) on nephrotoxicity caused by acute Dichlorvos (D) toxicity were investigated in this study. Forty-eight Wistar Albino rats were divided into 7 groups as follows: Control, D, CAPE, intralipid, D + CAPE, D + IL, and D + CAPE + IL. When compared to D group, the oxidative stress index (OSI) values were significantly lo...

متن کامل

Neuroprotective effects of propolis and caffeic acid phenethyl ester (CAPE) on the radiation-injured brain tissue (Neuroprotective effects of propolis and CAPE)

Background: Our purpose was to investigate propolis and its component caffeic acid phenethyl ester (CAPE) for their antioxidant effects on the brain tissue of rats exposed to ionizing radiation (IR). Materials and Methods: Fifty-four male albino Sprague-Dawley rats, divided into six groups, were designed as normal control group, cranial irradiation of 5 Gray alone, irradiation plus CAPE, irradi...

متن کامل

Attenuating effects of caffeic acid phenethyl ester with intralipid on hepatotoxicity of chlorpyrifos in the case of rats.

BACKGROUND Chlorpyrifos (CPF), insecticide widely used in agriculture, may cause poisonings in the case of humans. As a result, there is a large amount of treatment research underway to focus on the possibility of chlorpyrifos induced poisonings. The aim of this study has been to evaluate the effects of caffeic acid phenethyl ester (CAPE) and intralipid (IL) on hepatotoxicity induced by chlorpy...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Turkish neurosurgery

دوره 27 1  شماره 

صفحات  -

تاریخ انتشار 2017